当前位置:首页 > 短网址资讯 > 正文内容

Flink原理与实现:架构和拓扑概览

www.ft12.com5年前 (2017-08-13)短网址资讯1399

架构


要了解一个系统,一般都是从架构开始。我们关心的问题是:系统部署成功后各个节点都启动了哪些服务,各个服务之间又是怎么交互和协调的。下方是 Flink 集群启动后架构图。



当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager。由 Client 提交任务给 JobManager,JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。


  • Client 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming的任务),也可以不结束并等待结果返回。

  • JobManager 主要负责调度 Job 并协调 Task 做 checkpoint,职责上很像 Storm 的 Nimbus。从 Client 处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以 Task 的单元调度到各个 TaskManager 去执行。

  • TaskManager 在启动的时候就设置好了槽位数(Slot),每个 slot 能启动一个 Task,Task 为线程。从 JobManager 处接收需要部署的 Task,部署启动后,与自己的上游建立 Netty 连接,接收数据并处理。


可以看到 Flink 的任务调度是多线程模型,并且不同Job/Task混合在一个 TaskManager 进程中。虽然这种方式可以有效提高 CPU 利用率,但是个人不太喜欢这种设计,因为不仅缺乏资源隔离机制,同时也不方便调试。类似 Storm 的进程模型,一个JVM 中只跑该 Job 的 Tasks 实际应用中更为合理。


Job 例子


本文所示例子为 flink-1.0.x 版本


我们使用 Flink 自带的 examples 包中的 SocketTextStreamWordCount,这是一个从 socket 流中统计单词出现次数的例子。


  • 首先,使用 netcat 启动本地服务器:


  • 然后提交 Flink 程序


在netcat端输入单词并监控 taskmanager 的输出可以看到单词统计的结果。


SocketTextStreamWordCount 的具体代码如下:



我们将最后一行代码 env.execute 替换成 System.out.println(env.getExecutionPlan()); 并在本地运行该代码(并发度设为2),可以得到该拓扑的逻辑执行计划图的 JSON 串,将该 JSON 串粘贴到 http://flink.apache.org/visualizer/ 中,能可视化该执行图。



但这并不是最终在 Flink 中运行的执行图,只是一个表示拓扑节点关系的计划图,在 Flink 中对应了 SteramGraph。另外,提交拓扑后(并发度设为2)还能在 UI 中看到另一张执行计划图,如下所示,该图对应了 Flink 中的 JobGraph。


Graph


看起来有点乱,怎么有这么多不一样的图。实际上,还有更多的图。Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。


  • StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。

  • JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。

  • ExecutionGraph:JobManager 根据 JobGraph 生成的分布式执行图,是调度层最核心的数据结构。

  • 物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。


例如上文中的2个并发度(Source为1个并发度)的 SocketTextStreamWordCount 四层执行图的演变过程如下图所示(点击查看大图):


这里对一些名词进行简单的解释。


  • StreamGraph:根据用户通过 Stream API 编写的代码生成的最初的图。

    • StreamNode:用来代表 operator 的类,并具有所有相关的属性,如并发度、入边和出边等。

    • StreamEdge:表示连接两个StreamNode的边。


  • JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。

    • JobVertex:经过优化后符合条件的多个StreamNode可能会chain在一起生成一个JobVertex,即一个JobVertex包含一个或多个operator,JobVertex的输入是JobEdge,输出是IntermediateDataSet。

    • IntermediateDataSet:表示JobVertex的输出,即经过operator处理产生的数据集。producer是JobVertex,consumer是JobEdge。

    • JobEdge:代表了job graph中的一条数据传输通道。source 是 IntermediateDataSet,target 是 JobVertex。即数据通过JobEdge由IntermediateDataSet传递给目标JobVertex。


  • ExecutionGraph:JobManager 根据 JobGraph 生成的分布式执行图,是调度层最核心的数据结构。

    • ExecutionJobVertex:和JobGraph中的JobVertex一一对应。每一个ExecutionJobVertex都有和并发度一样多的 ExecutionVertex。

    • ExecutionVertex:表示ExecutionJobVertex的其中一个并发子任务,输入是ExecutionEdge,输出是IntermediateResultPartition。

    • IntermediateResult:和JobGraph中的IntermediateDataSet一一对应。每一个IntermediateResult的IntermediateResultPartition个数等于该operator的并发度。

    • IntermediateResultPartition:表示ExecutionVertex的一个输出分区,producer是ExecutionVertex,consumer是若干个ExecutionEdge。

    • ExecutionEdge:表示ExecutionVertex的输入,source是IntermediateResultPartition,target是ExecutionVertex。source和target都只能是一个。

    • Execution:是执行一个 ExecutionVertex 的一次尝试。当发生故障或者数据需要重算的情况下 ExecutionVertex 可能会有多个 ExecutionAttemptID。一个 Execution 通过 ExecutionAttemptID 来唯一标识。JM和TM之间关于 task 的部署和 task status 的更新都是通过 ExecutionAttemptID 来确定消息接受者。


  • 物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。

    • Task:Execution被调度后在分配的 TaskManager 中启动对应的 Task。Task 包裹了具有用户执行逻辑的 operator。

    • ResultPartition:代表由一个Task的生成的数据,和ExecutionGraph中的IntermediateResultPartition一一对应。

    • ResultSubpartition:是ResultPartition的一个子分区。每个ResultPartition包含多个ResultSubpartition,其数目要由下游消费 Task 数和 DistributionPattern 来决定。

    • InputGate:代表Task的输入封装,和JobGraph中JobEdge一一对应。每个InputGate消费了一个或多个的ResultPartition。

    • InputChannel:每个InputGate会包含一个以上的InputChannel,和ExecutionGraph中的ExecutionEdge一一对应,也和ResultSubpartition一对一地相连,即一个InputChannel接收一个ResultSubpartition的输出。


那么 Flink 为什么要设计这4张图呢,其目的是什么呢?Spark 中也有多张图,数据依赖图以及物理执行的DAG。其目的都是一样的,就是解耦,每张图各司其职,每张图对应了 Job 不同的阶段,更方便做该阶段的事情。我们给出更完整的 Flink Graph 的层次图。



首先我们看到,JobGraph 之上除了 StreamGraph 还有 OptimizedPlan。OptimizedPlan 是由 Batch API 转换而来的。StreamGraph 是由 Stream API 转换而来的。为什么 API 不直接转换成 JobGraph?因为,Batch 和 Stream 的图结构和优化方法有很大的区别,比如 Batch 有很多执行前的预分析用来优化图的执行,而这种优化并不普适于 Stream,所以通过 OptimizedPlan 来做 Batch 的优化会更方便和清晰,也不会影响 Stream。JobGraph 的责任就是统一 Batch 和 Stream 的图,用来描述清楚一个拓扑图的结构,并且做了 chaining 的优化,chaining 是普适于 Batch 和 Stream 的,所以在这一层做掉。ExecutionGraph 的责任是方便调度和各个 tasks 状态的监控和跟踪,所以 ExecutionGraph 是并行化的 JobGraph。而“物理执行图”就是最终分布式在各个机器上运行着的tasks了。所以可以看到,这种解耦方式极大地方便了我们在各个层所做的工作,各个层之间是相互隔离的。

扫描二维码推送至手机访问。

版权声明:本文由短链接发布,如需转载请注明出处。

本文链接:https://www.ft12.com/article_402.html

标签: 架构短网址
分享给朋友:

相关文章

有哪些可靠的短网址服务?

因为谷歌的打不开,,所以想起其它的服务哪些呢?另外看到个www.ft12.com支持访问统计哪些短网址也支持访问统计呢?知乎用户的回答:一直在收集      u6.ggc7.ggrrd.me985.souee....

短网址和二维码的完美结合

网址缩短服务是一个非常经典的互联网应用,国内最早的是新浪短网址:t.cn,基于BS架构,后台在SSH框架(Struts2.0+Hibemate3+Sprin93)下进行开发,根据用户请求进行相关的数据维护和逻辑操作;前台运用JQuery开发...

企业三大痛点再也不用怕,智能客服帮你来解决

企业三大痛点再也不用怕,智能客服帮你来解决

[ FT12短网址资讯 ] 客户集体数目大、咨询频次高、疑问重复度高的话,引进高性能的智能客服机器人能极大地节约人工本钱;社会开展到今日,挑选的极大丰富,让用户已习惯于享用各种便当,想得到就要立刻得到,智能客服契合了这一...

Google對於重複內容的建議

Google對於重複內容的建議

Google 线上问答 – 重复内容(2016年6月16日)从此次的问答影片当中可以看到,Google的Andrey Lipattsev非常肯定地说Google对于重复内容并不会给予惩罚。我们认为,他想表达的应该是想让大家了解到,如果Goo...

如何使营销短信效果最大化?FT12「短链接」统计功能来支招

营销短信可以用较低成本换来高转化率,同时可以达到精准营销的目的,因而广泛受到电商平台的追捧。 但短信链接有没有被点击,短信发出去后的效果如何?如何让营销短信变成用户喜爱的有价信息而非垃圾信息?如何评估营销短信转化率?FT12「短链...

京东布局航天物流业 五年预计投资205亿

京东布局航天物流业 五年预计投资205亿

5月22日,京东集团与西安航天基地签订了京东全球物流总部、京东无人体系工业基地和京东云运营基地协作协议。根据双方协议,京东计划五年内投资205亿元与西安航天基地展开深入协作,在才智供应链领域进行全方位、体系性布局,发挥双方优势联合开展“33...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。