当前位置:首页 > 短网址资讯

FT12短网址:给你的女朋友解释为什么随机播放歌曲并不随机

www.ft12.com7年前 (2018-09-07)短网址资讯1506

FT12短网址的小编在周末的时候开车带着女朋友出去玩。小编车里面随机播放着五月天的歌曲。当小编正沉浸在『得儿飘,得儿飘,得儿意的飘』中,幻想着自己是秋名山车神,突然,旁边的豆腐,哦不,女朋友说话了。


诶,你车上的歌曲是随机播放的吗?和短网址的随机跳转是一个样子的吗?






说白了:伪随机性(英语:Pseudorandomness)是一个过程似乎是随机的,但实际上并不是。伪随机数是看似随机实质是固定的周期性序列,也就是有规则的随机。

又拽概念了,你给我详细讲讲吧。




那么,什么是随机数?

随机数在计算机应用中使用的比较广泛,最为熟知的便是在密码学中的应用。随机数有3个特性,具体如下:

随机性:不存在统计学偏差,是完全杂乱的数列

不可预测性:不能从过去的数列推测出下一个出现的数

不可重现性:除非将数列本身保存下来,否则不能重现相同的数列

音乐播放器的随机播放又是如何实现的呢?

现在的音乐播放器都比较智能了,都带有一些类似于歌曲推荐的功能,会给听众随机推荐歌曲,这种是基于用户听歌习惯的随机推荐,不在我们讨论的范围内。我们只讨论那种简单的,比如使用简单的播放器随机播放一个CD卡中的列表的情况。

常见的音乐随机播放算法有两种,分别是Random算法和Shuffle算法。

Random算法

Random算法相对比较简单,播放当前歌曲时才随机生成下一曲。

Random算法是在选取即将播放的歌曲时,进行一个随机数的运算,得到即将播放的歌曲在播放列表中的索引,播放列表本身并没有被打乱,只是利用随机函数从播放列表中选取一首歌曲进行播放而已。

可以使用Java语言实现这种Random随机数算法:

Calendar ca = Calendar.getInstance();//获取系统当前时间
int i;
Random rand =new Random(ca.get(Calendar.MINUTE)*ca.get(Calendar.SECOND));//将随机数的种子设置为当前系统时间的分*秒
i=rand.nextInt(maxnum);//maxnum是随机数最大不超过得值

Random算法另一个缺陷是当点击“上一曲”时,跟“下一曲”功能完全一样,都是重新生成随机数,并利用它从播放列表中选取歌曲进行播放,而不会回到刚刚播放的那一首歌。

这种方法不好,都没办法找到上一首了。其实也有解决办法,比如提供个历史纪录来弥补。

太麻烦了吧。还有另外的算法吗?


Shuffle算法

Shuffle算法和排序算法正好相反,是从有序到乱序的一个过程,俗称洗牌算法。

它将播放列表中的歌曲顺序打乱,变成一个和原来歌曲顺序没有任何关系的乱序的播放列表,之后进行歌曲的播放,并支持当用户点击“上一首”时,能够回到刚刚播放的那一首歌曲。

这种算法相对于Random算法来说,并不是完全意义上的随机,只不过是对歌曲列表的乱序而已,歌曲的播放顺序还是相对固定的。

在Java中,有现成的shuffle算法实现,即Collections类中的两个重载的shuffle方法:

public static void shuffle(List list) {
    Random rnd = r;
    if (rnd == null)
        r = rnd = new Random();
    shuffle(list, rnd);
}
private static Random r;

public static void shuffle(List list, Random rnd) {
    int size = list.size();
    if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
        for (int i=size; i>1; i--)
            swap(list, i-1, rnd.nextInt(i));
    } else {
        Object arr[] = list.toArray();

        // Shuffle array
        for (int i=size; i>1; i--)
            swap(arr, i-1, rnd.nextInt(i));

        // Dump array back into list
        ListIterator it = list.listIterator();
        for (int i=0; i<arr.length; i++) {
            it.next();
            it.set(arr[i]);
        }
    }
}


哦,那我们的播放器应该是使用Shuffle实现的吧。




那我们这个就是伪随机,如果使用Random就是真随机了。




真随机与伪随机

随机数分为真随机数和伪随机数,我们程序使用的基本都是伪随机数,其中伪随机又分为强伪随机数和弱伪随机数。

  • 真随机数,通过物理实验得出,比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等。需要满足随机性、不可预测性、不可重现性。

  • 伪随机数,通过一定算法和种子得出。软件实现的是伪随机数。

    • 强伪随机数,难以预测的随机数。需要满足随机性和不可预测性。

    • 弱伪随机数,易于预测的随机数。需要满足随机性。

上面介绍Random算法和Shuffle算法的时候,代码实现都是伪随机算法。可以这样说:

只要这个随机数是由确定算法生成的,那就是伪随机。只能通过不断算法优化,使你的随机数更接近随机。

有限状态机不能产生真正的随机数的,所以,现代计算机中,无法通过一个纯算法来生成真正的随机数,无论是哪种语言,单纯的算法生成的数字都是伪随机数,都是由可确定的函数通过一个种子,产生的伪随机数。

这也就意味着,如果知道了种子,就可以推断接下来的随机数序列的信息。这就有了可预测性。

那么真随机数怎么产生的呢?

通过真实随机事件取得的随机数才是真随机数。

真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。这样的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高,效率低。

现有的真随机数生成器,比如PuTTYgen的随机数是让用户移动鼠标达到一定的长度,之后把鼠标的运动轨迹转化为种子;Intel通过电阻和振荡器来生成热噪声作为信息熵资源;Unix/Linux的dev/random和/dev/urandom采用硬件噪音生成随机数;

所以,要想生成真的随机数,是无法用任何一个纯算法实现的。都需要借助外部物理现象。

啊?这也太难了吧,想要生成个随机数,竟然还要懂物理学。




那你们平时工作重要使用随机数怎么办啊?




Java中的随机数生成器

Java语言提供了几种随机数生成器,如前面提到的Random类,还有SecureRandom类。

强随机数发生器

强随机数发生器依赖于操作系统底层提供的随机事件。强随机数生成器的初始化速度和生成速度都较慢,而且由于需要一定的熵累积才能生成足够强度的随机数,所以可能会造成阻塞。熵累积通常来源于多个随机事件源,如敲击键盘的时间间隔,移动鼠标的距离与间隔,特定中断的时间间隔等。所以,只有在需要生成加密性强的随机数据的时候才用它。

Java提供的强随机数发生器是java.security.SecureRandom类,该类也是一个线程安全类,使用synchronize方法保证线程安全,但jdk并没有做出承诺在将来改变SecureRandom的线程安全性。因此,同Random一样,在高并发的多线程环境中可能会有性能问题。

在linux的实现中,可以使用/dev/random/dev/urandom作为随机事件源。由于/dev/random是堵塞的,在读取随机数的时候,当熵池值为空的时候会堵塞影响性能,尤其是系统大并发的生成随机数的时候。

伪随机数生成器

伪随机数发生器采用特定的算法,将随机数种子seed转换成一系列的伪随机数。伪随机数依赖于seed的值,给定相同的seed值总是生成相同的随机数。伪随机数的生成过程只依赖CPU,不依赖任何外部设备,生成速度快,不会阻塞。

Java提供的伪随机数发生器有java.util.Random类和java.util.concurrent.ThreadLocalRandom类。

Random类采用AtomicLong实现,保证多线程的线程安全性,但正如该类注释上说明的,多线程并发获取随机数时性能较差。

多线程环境中可以使用ThreadLocalRandom作为随机数发生器,ThreadLocalRandom采用了线程局部变量来改善性能,这样就可以使用long而不是AtomicLong,此外,ThreadLocalRandom还进行了字节填充,以避免伪共享。

真随机数发生器

在Linux系统中,SecureRandom的实现借助了/dev/random/dev/urandom,可以使用硬件噪音生成随机数;

https://www.ft12.com/,从1998年开始提供在线真随机数服务了,它用大气噪音生成真随机数。他也提供了Java工具类,可以拿来使用。地址:https://sourceforge.net/projects/randomjapi/

奥,我好像懂了。真随机数生成要求太高了。所以一般都是用伪随机数。




可是,虽然我理解了,但是我还是希望歌曲的随机可以真随机怎么办呢?




为了躲避这个看(wu)似(li)合(qu)理(nao)的问题,我拉着她回到车子,找了一首她最喜欢的《演员》单曲循环了。


扫描二维码推送至手机访问。

版权声明:本文由短链接发布,如需转载请注明出处。

本文链接:https://www.ft12.com/article_535.html

分享给朋友:

相关文章

月薪5万的人都经历过什么?

为了方便起见,人们习惯用数字概括不同的生活状态,比如:《月薪5千穿搭指南》、《月薪2万餐厅指南》。如果你生活在北上广这些竞争压力较大的城市,会发现这类流行的指南所覆盖的人群,大多对自己的薪资并不满意。很多年轻人在新世相后台焦虑地留言,描述自…

每天坚持不懈的写软文,得到的几点心得感悟

每天坚持不懈的写软文,得到的几点心得感悟

夜深了,我喜欢这样宁静的夜,它能让人不用去想更多的事情,专注于做自己想做的事情,我认为是一种幸福的事情,拿着手机播放了今晚的《半夜听》节目,听这个节目已经有一段时间了,虽然每天只有那么短短的几分钟,但是那些字眼确实令我欲罢不能,听完几分钟的…

开着市值2000亿的公司,却跑去卖猪肉,他说赚钱只是顺便的事情…

开着市值2000亿的公司,却跑去卖猪肉,他说赚钱只是顺便的事情…

但凡接触过互联网行业的,无人不识网易和短网址。作为一个优秀的互联网公司,它的作品也向来让人满意。率先推出了中文全文检索、免费邮件系统、网上虚拟社区等,还研发了一款史诗级的国产网络网游。十多年经久不衰的《梦幻西游》,《大话西游》,《短链接》等…

勒索病毒“永恒之蓝”大爆发

勒索病毒“永恒之蓝”大爆发

2017年5月12日20时左右,新型“蠕虫”式勒索病毒“WannaCry”爆发。截至目前,该病毒已经席卷包括中国、美国、俄罗斯及欧洲在内的100多个国家。我国部分高校内网、大型企业内网和政府机构专网遭受攻击,被感染的组织和机构已经覆盖了几乎…

生鲜配送服务的未来在哪?答案可能得从它的过去中寻找

作者:喜汤按:Pique基金创始投资人、综合投资作者Bonnie Foley-Wong在 Quora 回答了“是什么让生鲜食品配送公司真正走向主流?”这一问题。她举了五个因素来回答该问题,最终得出短期内,生鲜食品配送公司可能不会走向主流的结…

短网址的正确使用方式

短网址毋庸置疑是一个伟大的互联网产物,什么行业都能用的到。今天去莱茵培训,一路上都是靠着短链接和二维码指引过去的,真的是太方便了。首先,高铁票上的短链接指引着我去了上海火车站,很快,从安亭到上海火车站只花了不到15分钟,简直不可思议,安亭人…

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。