当前位置:首页 > 短网址资讯 > 正文内容

FT12短网址:面对人工智能的飞速发展,我们更要保持头脑清醒

www.ft12.com7年前 (2017-06-04)短网址资讯2224
[ FT12短网址 ] 人工智能的成功使用主要在以下方面:语音、图画辨认、电商/引荐、博弈、更深层次的对立网络;人工智能在AlphaGo上的使用显然成功了,但在教学、医疗范畴很难仿制;AI技术的风口在于深度学习。
人工智能 机器人,人工智能,深度学习,AlphaGo,语音辨认,图画辨认,无人驾驶

【编者按】这篇文章摘自杨强教授在“Fintech x AI 高端研习班”上的分享。杨强教授,系香港科技大学核算机系主任、世界人工智能学会首任华人Fellow,曾任华为诺亚方舟实验室开创主任。在此次研习班,他分享了AlphaGo的含义、公司怎么落地人工智能、AI技术的风口等内容。


AlphaGo为咱们带来了啥?

人工智能的成功使用主要在以下方面,而非一切:

第一个是语音,语音已经有许多年的前史了,可是引进深度学习今后,格外近几年有了突破性的开展;第二是图画辨认,比方人脸辨认;第三是电商/引荐,像taobao、京东这么的电商/引荐;第四是博弈,最典型的即是AlphaGo;第五是更深层次的对立网络,基于博弈的思想,这个的使用就许多了,其中最引人瞩目的即是无人车。

人工智能首次遭到重视是97年的深蓝,其时是象棋范畴战胜了世界冠军。象棋本来即是十分难的范畴,咱们打开一个棋盘,一切也许的计划总数大概是10的47次方,这是十分庞大的数字;但在用了IBM高性能核算今后有了明显的开展。

所以这一次应当说是几个事情的成功:第一个是高性能的核算,第二个运用了群体智能,让许多二流的世界象棋专家对这些节点进行评价,最后把他们的分数加以总结来战胜一个世界冠军,一共用了两百多个二流的人,它和今天的AlphaGo相比,最大的缺点即是没有机器学习的能力。

五年前人工智能范畴呈现了一个新名词,叫做“深度学习”。咱们知道深度学习首要在图画上有对比直观的解说,咱们输入一个图画,可以在图画上采集一些样本,这些样本会为咱们带来一些特征。这些特征包括对比初级的一个个像素,像素上面所带的信息、颜色、亮度,咱们可以将这些特征总结起来。

DeepMind是AlphaGo背面的团队,将“深度学习”与“强化学习”结合起来,把围棋的棋盘当作输入,另一端输出动作,需求往左仍是往右,需求把棋子放在哪儿等等,即是需求一个深度学习网络完结这种对应,这些都是核算机可以自学的。

可是咱们看出这个疑问的缺点了吗?围棋的情形和咱们实际生活差距相当大,由于这是一个十分理想的世界,咱们的规则十分明白,边界也十分明白,输赢会立马反映在上面,动作简略,一点不含糊。所以在这种关闭的范畴、明白的范畴,优化方针可以写下来的范畴,AlphaGo的算法是彻底没有疑问的。

AlphaGo里边有两个函数我要格外提一下,一个叫做“战略网络”,所谓“战略网络”即是通知你在这里应当怎么走。战略网络中的“S”即是咱们所说的状况,“A”是咱们说的“Action”,“P”则是概率的意思,整体来说是“在这个状况下对方大概会走哪一步”,让你对对方有一个了解。咱们怎么进行练习呢?拿了三千万个竞赛的棋盘来练习,看假如从这个状况动身,高手一般走哪一步,咱们就可以学习下来。

其实无人车也是用这种方法,让它先在关闭的环境里学驾驶,学会了再出去开。特斯拉的意外即是一个反例,在特斯拉这个比方中,机器给车前面照了个相,判别前方是空的,体系就会反馈说前方的状况是有利的,可以往前走;假如前面是一堵墙,打分就会较低,体系会判别没有利。特斯拉即是出了一个错,体系判别前面是空旷的,以为是白色的白云,但实际上是白色的货车,因而就撞上了,这即是由于练习缺乏。

第二个值得一提的算法,在AlphaGo去年的竞赛里,由于核算能力有限,对每一个状况,即每一个“S”的估量还不够好,就加了一个新的算法叫做蒙特卡罗算法。 即是我在现有状况下让机器随机走棋,最后是输是赢给我一个反馈。

像这么快速走棋了N次之后,可以拿这些样本做一个抽样,这么就能很快通知我这么走对我是好仍是坏。这个会迅速得出成果,可是会十分不准,由于毕竟是在无限当中进行有限的抽样,所以去年AlphaGo还有一盘棋是输给李世石的。

到了今年咱们知道master是60局全胜,这个月23日在乌镇和柯洁的竞赛,咱们做人工智能的觉得人类就没啥戏了。为啥呢?由于如今咱们把这种随机进程悉数替代掉了,一切练习都是经过强化学习来完结的,机器犯错的概率就大大降低了,据说如今的AlphaGo给去年的自个让四个子还能赢。

咱们能从AlphaGo的成功中学到啥?短网址该如何开发和运营?

人工智能在AlphaGo上的使用显然成功了,那么像在教学范畴、医疗范畴是否能仿制这种成功?我觉得是十分难的。

人工智能的成功首要得有高质量的大数据。AlphaGo是学习了三千万个棋盘,十多万个棋局,这些都是其时练习时使用的数据,那个时候还没有跟李世石对弈的实时数据做练习,因而前期收集的数据是十分关键的。

除此之外,假如前期用质量不太高的数据,比方说围棋一段以下的数据来核算,那样练习出来的效果是十分差的,所以对数据质量请求十分高。

还需求有清晰的疑问,也即是咱们的“A(Action)”,在围棋中只有下棋、放子这么的动作,没有任何其它的东西,不像投资这么杂乱。

另外还要有极好的获取特征的方法。比方说棋盘,要有专家参与进来,把每一个棋子周边的情况用所谓的“变量”表达出来,这些变量咱们叫做特征。能发生这些变量需求专家,就像AlphaGo团队里的工程师基本都会下围棋。

以上我讲AlphaGo的时候本着两个目的,第一个给咱们科普,通知咱们它在做啥,让咱们了解它的机制;第二是给咱们泼冷水,通知你们AlphaGo的成功实际上十分难仿制。

有记者常问,AlphaGo意味着啥?咱们这边说意味着人类要没有工作了,人类不需求存在了;再问AlphaGo的团队这些成功意味着啥?他们会答意味着核算机也会下围棋了,所以他们是很低调的。

我觉得这个标题是值得咱们总结的,格外是如今人工智能胀大的进程中,咱们必定要保持清醒的头脑。

公司怎么将人工智能落地?

咱们要树立一个机器学习模型,首要得有一个方针。这里边分红两类,一类是商业方针,人工智能尽管可以用这么多的方面,流程主动化、客服等等,但必定要清晰最终方针是啥,是要倍增收益,把地盘扩大,仍是要把最后的费用削减。

第二,知道要添加收益或削减费用后,你需求把它量化成数学公式,咱们通常管这个叫做优化函数。比方说哪些使命可以用主动化带来价值,完结这个主动化进程自身需求费用,这个费用是不是值得花?这是需求顾及的。

是否要引进第三方外援?不是每个人都要从头开始做AI,要想从最底层的数据、网络、东西、使用,云悉数完结,这个恐怕也只有BAT可以做,但咱们没必要每一个公司、每一个team都做这些事;还有一个人工智能体系通常需求继续支持,这个支持通常很贵重,咱们是否能承担的起,要评价自个的人力资源、资金、数据是不是够用。

第三,咨询业务方和数据拥有方。我在华为、腾讯都做过,知道许多大公司都有部门墙,部门之间几乎是不沟通的,因而这个数据通常是以孤岛的形式存在的。而今天的人工智能,格外深度学习、强化学习,这两大东西都十分依赖于数据。使咱们购买了数据,怎么清洗和结合数据又是第二个疑问,数据构造化的进程是十分贵重的,通常需求许多人工。

第四个即是AI团队建设。假如咱们有AI团队,这个团队和业务团队是不能分隔的,它必定要有清晰的责任,要有一个技术接口人、管理人员、数据的责任人、体系结合的责任人,都要十分清晰,要有一个完好的KPI。

咱们拿百度举例,咱们知道吴恩达刚刚脱离,很大的原因是拿不到数据资源、业务资源,这种人又有抱负,当然会挑选脱离,那么咱们该怎么管理这个事?咱们要从一开始就清晰这个团队的方针是啥,也即是KPI。

第五点,AI的项目需求各式各样的计划,和一般的软件没有区别,我觉得把AI和别的软件工程区分隔始过错的。

AI技术的风口在哪里?

深度学习.jpg

深度学习格外要命的一点,即是它的构造是一个黑箱。经过几千万个样本练习今后,彻底没有办法解说。啥叫做“解说”呢?一旦有错我可以知道是哪里出了错,应当调整哪个当地,但我无从得知。

所以AlphaGo就出了这么一件事,其时4:1输给李世石关键一步,它想知道哪一个当地出了疑问,由于这肯定是深度学习在预算棋盘时出了一个严重过错,但没有办法回溯,假如其时再竞赛一次还会呈现相同的过错,短链接一旦生成就没有办法纠正。

那么啥叫做“白箱”,啥叫做“可解说的模型”呢?因果联系的模型即是可解说的,比方医生知道给患者吃了这个药后患者有多大机率会康复,这即是因果联系。因果联系的门户在人工智能范畴确实存在,叫做贝叶斯门户,但如今没有格外靠谱的主动学习的算法。

如今在许多范畴,假如一个模型给出了定论,但不知道为啥会给出这个定论,通常该范畴是不会允许你使用这个模型的,因而“因果联系”十分重要。所以“深度学习”范畴需求有更多品种、需求是可解说的、可编程的。

第二个是咱们所说的搬迁学习。所谓“搬迁学习”即是给出一个已经练习好的范畴模型,这个模型也许对应一个神经网络,那么咱们能不能从中抽象出对比高层的逻辑常识,假如有了这个常识,就可以对比容易地把高层常识逻辑搬迁到新的范畴

比方说“舆情”,比方说咱们在微博上可以看一些人的评论和留言,咱们知道这些留言是正面仍是负面的,关于新出的电影或者一个事情就有正面、负面的判别。

咱们假如在这个范畴练习出了模型,能不能搬迁到一个新的范畴,比方对图书、股票、股价、公司也做这种预测?所以这种搬迁是很有用的。搬迁的目的即是咱们不用做许多的标示、不用花费许多建模费用,就可以把已有模型搬迁到新的范畴。

还有一种学习叫做表示学习,在自然语言处理的范畴也阅历了革新性的转化。如今机器经过大量文本学习一个新的“表达”,可以判别这个词呈现的场景、它和周边的字是啥联系——咱们树立起一个字及其周边常见字的“朋友圈”,经过学习来发现同义词,而不是经过人来通知机器。

这个表达学习的进程叫做“机器阅读”,把每一个词中字的“朋友圈”都表达出来,比方说贾宝玉和谁最好,机器模型可以主动回答,而且十分准。咱们有了机器阅读,就可以发生一个新的表达,比方说可以做一个《红楼梦》的摘要。

然后咱们说Echo学习体系的一问一答,如今可以做得很准,其一即是由于Echo有一个很强的硬件体系,可以被智能唤醒,知道这个是在对着它讲话仍是在对着别人;然后将软硬件相结合,把软件的长处发挥出来。

另一点即是Echo的使用场景十分明白,它的方针是一个有限的笔直范畴,而不是一上来就做一个通用的对话体系,这也是咱们需求借鉴的。

我再说一下人工智能未来的几个方向,在基础核算构造有两方面,一方面是芯片的研讨,像英伟达做的GPU,google做的TPU,尽管不知道啥时候商业化,但据说是十分牛的人工智能芯片。另外一个,过去咱们在网络的传输层还没有格外适合深度学习的网络研讨,如今有了,假如在网络层做优化就能把深度学习加快到四五倍这么的水平,这将是网络传输层的革新。

最后做一个总结,深度学习可以做许多研讨——强化学习可以和搬迁学习相结合做许多个性化的使命完结对话,智能计划等等。搬迁学习可以帮助完结常识的高层表达、跨范畴的常识,还有小数据的学习。还有怎么可以进行信息抽取,把自然语言这种非构造化数据表达出来,可以进行主动问答、对话体系,包括摘要的主动树立,算法加快,人工智能的工程化。


扫描二维码推送至手机访问。

版权声明:本文由短链接发布,如需转载请注明出处。

本文链接:https://www.ft12.com/article_167.html

分享给朋友:

相关文章

短网址的正确使用方式

短网址毋庸置疑是一个伟大的互联网产物,什么行业都能用的到。今天去莱茵培训,一路上都是靠着短链接和二维码指引过去的,真的是太方便了。首先,高铁票上的短链接指引着我去了上海火车站,很快,从安亭到上海火车站只花了不到15分钟,简直不可思议,安亭人...

校园贷后又现整容贷,校园金融到底怎么了?

继校园贷引发的悲剧被媒体大肆报道后,整容贷又被推到舆论的风口浪尖。FT12短网址的小编奉劝各位爱美的同学,还是要量力而为呀!近年来,在互联网金融的强势推动下,我国的消费贷款迎来爆发式的增长。数据显示,2008年到2016年,我国消费性贷款余...

从代码层面优化系统性能的解决方案

从代码层面优化系统性能的解决方案

我们以前看到的很多架构变迁或者演进方面的文章大多都是针对架构方面的介绍,很少有针对代码级别的性能优化介绍。本文将针对一些代码细节方面的东西进行介绍,欢迎大家吐槽以及提建议。 写在前面 在 上一篇 我们主要介...

FT12短网址教你如何甄别真假百度蜘蛛

尽管百度的口碑并不好,可是不可否认的是,它一直是中文搜索中的霸主,所以对大多数中小型商业公司而言,都对baidu蜘蛛的抓取做法予以放行,不过还有许多不合法的蜘蛛,它们会经过 User-Agent 把自个伪装成baidu蜘蛛,此刻如果单纯以...

国际零售巨头亚马逊染指东南亚 最快本周登录新加坡

国际零售巨头亚马逊染指东南亚 最快本周登录新加坡

【FT12短网址资讯】7月26日音讯,据美国科技类博客Techcrunch报导,全球电商巨头亚马逊(Amazon)将推出新加坡站,以此先开进军东南亚商场的前奏。据悉,亚马逊最快将于本周正式登陆新加坡,并将在新加坡推出亚马逊Prime会员效劳...

使用PHP和Node.js连接dubbo短网址服务

使用PHP和Node.js连接dubbo短网址服务

DUBBO是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,是阿里巴巴SOA服务化治理方案的核心框架,每天为2,000+个服务提供3,000,000,000+次访问量支持,并被广泛应用于阿里巴巴集团的各成员站点。不巧的...

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。